PEZHVAKEIRAN.COM شکل‌‌گیری و چرخیدن اجرام کیهانی
 

شکل‌‌گیری و چرخیدن اجرام کیهانی
کهکشان‌ها، سیاه‌چاله‌ها، ستاره‌ها، سیاره‌ها و ماه‌ها 

حسن بلوری

"همه چیز جریان دارد."۲ و این به دلیل نیروی گرانش است که همه چیز را بر همه چیز دیگری اعمال می‌کند.

توضیح:

در ابتدای مقالهٔ پیشین۲ تحت عنوان ’چرا اجرام کیهانی می‌چرخند؟ آیا کیهان نیز می‌چرخد؟‘ نوشتیم:"به خاطرگستردگیموضوع مورد نظر محتوای آن در دو مقالهٔ مرتبط باهم ارائه می‌شود." در مقالهٔ نخست۲ به معرفی موضوع و مفهوم‌های اساسی ضروری برای فهم آن و مسئلهٔ ’آیا کیهان می‌چرخد؟‘ پرداختیم. حال در این مقاله دوم می‌خواهیم شکل‌گیری و چرخیدن کهکشان‌ها، سیاه‌چاله‌ها، ستاره‌ها، سیاره‌ها و ماه‌ها را بررسی و توضیح دهیم و در پایان به این پرسش پاسخ دهیم که چرا همهٔ سیارات روی یک صفحه قرار دارند.

یادآوری

همانگونه که در مقاله نخست توضیح دادیم اگر کیهان فقط از عناصر ساده‌‌ (ذرات، گازها) به صورت صد در صد همگن تشکیل شده بود، شکل‌گیری ساختارهای مرکب و پیچیده مانند ستاره‌ها و سیاره‌ها و چرخیدن آنها غیرممکن بود. برای پیدایش (ظهور) چنان ساختارهایی لازم است سوای مواد ضروری، نیرو یا نیروهای بُرداری به نام تکانهٔ زاویه‌ای نیز شکل بگیرد.۲  

مشاهده‌‌ی اجرام آسمانی و چرخیدن آنها ما را به این نتیجه می‌رساند که کیهان یا از همان ابتدای پیدایش خود از نیرو (نیروهای) ضروری برخوردار بوده و یا در طول زمان به آنها دست یافته است. در هر دو حالت لازم است توضیح دهیم که چگونه آن ساختارها شکل‌‌گرفته‌اند‌ و علت چرخیدنشان چیست. بی‌تردید هر یک از این دو پرسش فرض همگن بودن کیهان را زیر سؤال می‌برد. از این‌رو لازم است نشان دهیم که چگونه شرایط برای شکل‌گیری چنان پدیده‌هایی که به فراوانی مشاهده می‌کنیم به وجود آمده و می‌آید، به‌ویژه در صورت همگن بودن کیهان در آغاز. برای حالت همگن تصور می‌کنیم که زمانی در مکانی به هر دلیلی اولین "جرقه" یا "تلنگر" برای گردهم‌آیی ذرات و گازها زده شده است. از این لحظه به بعد ذرات و گازهای اطراف بیشتر و بیشتر جذب مکان مزبور شده و در طول زمان با کنش و واکنش‌های میان خود شکل‌گیری ساختارهای آسمانی و چرخیدنشان را سبب گشته است. "جرم و چگالی این بخش در طول زمان با جذب هرچه بیشتر ذرات و ملکول‌های اطراف در رابطه با نیروی گرانش زیادتر می‌شود. می‌توان تصور کرد که یک چنین پروسه‌ای در مکان‌ها و زمان‌های مختلف شکل‌گرفته و همچنان می‌گیرد. در این صورت طبیعی است که هر یک از این بخش‌ها از تکانهٔ زاویهٔ‌ای ویژه برخوردار باشند. یعنی، اندازه‌ و جهت تکانهٔ‌زاویه‌ای آنها باهم برابر نباشد. به این معنا که  یکی در جهت راست، دیگری در جهت چپ و باز دیگری میان این دو جهت با سرعت‌های مختلف بچرخند.

مکانی که دارای چگالی بیشتری است ماده بیشتری را بسوی خود می‌کشد و در ادامه می‌تواند شروع به فروریزی و کوچکتر شدن کند و تبدیل به ستاره یا سیاه‌چاله‌ شود. در چنان ‌حالتی سرعت چرخیدن آن مانند یک اسکیت‌باز که بازوهایش را جمع می‌کند بیشتر می‌شود. به این ترتیب و در واقع هر یک از آن مکان‌ها داستان خود را دارد."۳ و۴ برای فهم بهتر این موضوع لازم است یک حداقل آشنایی با مفهوم توپولوژی و رابطه آن با اجرام آسمانی، تکانهٔ زاویه‌ای و کیهان داشته باشیم که در مقاله‌ی پیشین۲ توضیح دادیم.  

شکل‌گیری، فرم و چرخیدن کهکشان‌ها

ما از شکل‌گیری و چرخش کهکشان‌ها اطلاع دقیقی نداریم. شاید ابتدا کلان ابرهای گازی، هر یک به وسعت چندین میلیون سال نوری، وجود داشته‌ و در طول زمان در هر یک از آنها میلیاردها ستاره بوجود آمده‌ که در مجموع ساختارهایی به نام کهکشان‌ها را تشکیل می‌دهند. البته امکان دارد که این دیدگاه درست نباشد. چراکه شواهدی وجود دارند که نشان می‌دهند کهکشان‌های بزرگ از کهکشان‌های فراوان کوچکِ پیش‌تر موجود و برآیند تکانهٔ زاویه‌ای تک تک آنها بوجود آمده‌اند. برای مثال در گذشته بین کهکشان راهِ شیری و کهکشان آندرومداهزاران کهکشان‌های کوچک وجود داشته است که در طول زمان از جانب این دو کهکشان ‌توسط نیروی گرانش بلعیده شدند.

فرم و جهت چرخش کهکشان‌ها همه به یک شکل نیست. بعضی از آنها مانند کهکشان راه شیری فرم صفحه‌ای و مارپیچی دارند. ضخامت این کهکشان‌ها بسیار کوچکتر از شعاع آنهاست. این کهکشان‌ها با وسعت صدهزارسال نوری با چند صد کیلومتر در ثانیه دور مرکز خود می‌چرخند. حرکت ستاره‌ها در این کهکشان‌ها بسیار آهسته‌تر از حرکت دورانی کهکشان دور محور خود است. جهت چرخش کهکشان‌های مارپیچی به طرف راست یا چپ می‌باشد (تصویر۲و۳).

 

           

         تصویر۲: کهکشان مارپیچی۵، ۱۰۱M   NASA and ESA ,                  تصویر۳: کهکشان مارپیچی۵، ۷۴ NASA, ESA and Heritage Team,   ,M

نوع ویژه دیگری از این کهکشان‌ها به نام کهکشان‌های مارپیچی میله‌ای هستند که از یک مرکز یا هسته میله‌ای‌شکل برخوردار می‌باشند (تصویر۴).

 

 

                        تصویر۴: کهکشان مارپیچی میله‌ای NGC 1300۶                         

"جوان‌ترین ستاره‌های کهکشان‌های مارپیچی در بازوهای کم توده آنها یافت می‌شوند. ستاره‌های سالخورده بیشتر در هسته‌ی فشرده جای دارند و سالخورده‌ترین ستاره‌ها در هاله‌های کروی پراکنده و پیرامون قرص کهکشانی را فرا گرفته‌اند. بازوها همچنین دارای غبار و گاز فراوان هستند که به‌نوبه خود امکان شکل‌گیری ستاره‌های جدید را ایجاد می‌کنند." ۷

تمامی کهکشان‌ها، مستقل از اندازه‌ی بزرگی‌شان، حدود یک میلیارد سال برای یک دور کامل چرخیدن به دور خود زمان لازم دارند. علت این امر وجود یک رابطه‌ی خطی بین شعاع و سرعت چرخش است که می‌گوید: هرچه کهکشان بزرگتر باشد، سرعت چرخش آن بیشتر است.

بعضی ویژگی‌های کهکشان راهِ شیری

بعضی ویژگی‌های فیزیکی کهکشان راهِ شیری که سامانه خورشیدی نیز در آن قرار دارد۲۰: این کهکشان شکل صفحه‌ای (میله‌ای) مارپیچی دارد با قطری برابر با ۹۰۰۰۰ تا ۱۲۰۰۰۰سال نوری؛ ضخامت تا ۱۵۰۰۰سال نوری؛ جرم (با ماده تاریک) حدود ۱٫۵۰۱۰۱۲ برابرِ جرمِ خورشید. تعداد ستاره‌های آن حدود ۱۰۰ تا ۴۰۰ میلیارد؛ سرعت چرخش نسبت به تابش زمینه کیهانی حدود ۵۵۲ کیلومتر در ثانیه؛ زمان چرخش به دور خود ۲۰۰میلیون سال؛ سامانه خورشیدی با سرعتی برابر با ۲۲۰ کیلومتر در ثانیه دور سیاه‌چاله‌ای  در مرکز کهکشان به نام Sgr A* با جرم ۴میلیون برابر جرم خورشید می‌چرخد؛ اندازه تکانه زاویه‌ای حدود J s ۱۰۶۷×۱ می‌باشد.

 

خوشه‌های کهکشانی

"خوشه‌های کهکشانی شامل چندین هزار کهکشان می‌شوند (تصویر۵). هر یک از کهکشان‌ها در آن با سرعت‌ ویژه در یک میدانِ گرانشیِ مشترک حرکت می‌کنند. طبق دانش کنونی خوشه‌های کهکشانی بزرگترین ساختارهای کیهانی هستند که توسط نیروی گرانشی بهم پایبند (مقید) هستند."۸

بعضی ویژگی‌های خوشه‌های کهکشانی

بعضی ویژگی‌های فیزیکی خوشه‌های کهکشانی۹: "جرم حدود ۱۰۱۴ تا ۱۰۱۵ جرمِ خورشید، در منطقه‌ای معمولن ۱۰میلیون سال نوری، با سرعت‌هایی در حدوده ۵۰۰ تا ۱۰۰۰ کیلومتر در ثانیه، اکثرن در وسط خوشه‌ی کهکشان یک کهکشان بیضوی‌شکل بزرگ می‌باشد، مانند M87.در مرکز خوشه کهکشانی در فاصله ۵۹ سال نوری از ما به نام Virgo"۸

 

تصویر۵: نقشه ابرخوشه کهکشان‌ها و فضاهای خالی در یک فاصله‌ی یک میلیاردسال نوری از کهکشان راه شیری،

لانیاکیا در رنگ زرد۱۰

"یک خوشه‌ی کهکشانی از سه بخش تشکیل شده است، کهکشان‌هایی که دارای میلیاردها ستاره‌ هستند (پنج درصد جرم کل)، گاز داغ (حدود پانزده درصد) میان کهکشان‌ها و ماده تاریک، ماده‌ای که بیشترین جرم کهکشان را تشکیل می‌دهد (حدود هشتاد درصد). خوشه‌های کهکشانی مانند خوشه‌ی کهکشانی محلی از ۲۰ تا۳۰ عضو کهکشان تشکیل شده و تا خوشه‌های کهکشانی کروی‌شکل تا ده‌ها هزار عضو ادامه می‌یابد."۹ کهکشان راه شیری در ابرخوشه لانیاکیا (Laniakea)۱۰ قرار دارد (تصویر۵). این ابرخوشه با قطری برابر با ۲۵۰ میلیون سال نوری ۱۰۰هزار کهکشان را شامل می‌شود. 

شکل‌گیری، فرم و چرایی نچرخیدن برخی از کهکشان‌ها

سوای انواع کهکشان‌های مارپیچی صفحه‌ای ذکر شده، کهکشان‌های دیگری هم هستند که شکلِ بیضوی، یا کُره‌وار‌‌ دارند (تصویر۶). اما کهکشان‌های دیگری نیز هستند که اساسن سامان‌بندی خاصی ندارند، یعنی ناهمگون و بی‌قاعده‌ می‌باشند.

 

                                                            تصویر۶: کهکشان بیضی‌شکل NGC 4696۱۱

علت درخشش خاص کهکشان‌های کُره‌وار نزدیکی ستاره‌های آن به هم است. به دلیل انباشت نور ستارگان رویهم تشخیص تک تک آنها ناممکن است و تنها ستاره‌های اطراف آن قابل مشاهده هستند. "حرکت ستاره‌ها در کهکشان‌های بیصی‌شکل بسیار سریع‌تر از حرکت کهکشان دور خود است. این مهم‌ترین فرق بین کهکشان صفحه‌ای با یک کهکشان بیضی‌شکل است ـ به معنای اختلاف دینامیکی بین آنها. مشاهدات نشان می‌دهند که کهکشان بیضی‌شکل جاییست که اغلب در مرکز آن خوشه‌های کهکشانی وجود دارند، هزاران کهکشان در یک خوشه کهکشانی. یعنی، در مرکز کهکشان بیضی‌شکل یک کهکشان بیضی‌شکل بزرگ وجود دارد، کهکشانی که در طول میلیاردها سال کهکشان‌های اطراف را ‌بلعیده و می‌بلعد. در واقع کهکشان‌های کوچک به داخل کهکشان بزرگ سقوط می‌کنند و لذا زمانی برای حرکت زاویه‌ای آنها باقی نمی‌ماند. در نتیجه این نوع کهکشان‌ها شانس زیادی برای چرخیدن ندارند."۳ و۴

شکل‌گیری و چرخیدن سیاه‌چاله‌ها

در باره‌ی سیاه‌‌چاله‌ها و شکل‌گیری این اجرام آسمانی در مقاله۱۲ می‌خوانیم:

"سیاه‌چاله یا حفره‌ی سیاه به ناحیه‌ای از فضازمان گفته می‌شود که از ماده‌ی بشدت بهم‌فشرده‌‌ تشکیل شده و نیروی گرانشی آن چنان بالاست، یعنی انحنای فضازمان آن‌ چنان شدید است، که امکان گریز هیچ چیز حتا نور را هم نمی‌دهد. مرز بیرونی این ناحیه افقِ رویداد (event horizon) نامیده می‌شود. افق رویداد منطقه‌ی اطراف سیاه‌چاله و مرز غیرقابل نفوز از داخل حفره‌ی سیاه به بیرون است. گرچه این نواحی سیاه و لذا نامرئی هستند اما کنش و واکنش گرانشی آن‌ها با ماده پیرامون خود خبر از موجودیت آن‌ها می‌دهد. کمیت بارز و تعیین کننده‌‌‌ی سیاه‌چاله‌ها‌‌ چگالی بسیار بالای آن‌هاست‌ و نه الزاما جرم زیاد.

 تقسیم‌بندی سیاه‌چاله‌ها برپایه مشخصات فیزیکی‌ (جرم، بارالکتریکی و تکانه‌ی زاویه‌ای): ۱. سیاه‌چاله‌های بدون بارالکتریکی و بدون چرخش؛ قابل تشریح با متریک شوارتزشیلد، ۲. سیاه‌چاله‌های بدون بارالکتریکی ولیکن چرخنده؛ قابل تشریح با متریک کِر، ۳. سیاه‌چاله‌های با بارالکتریکی و بدون چرخش؛ قابل تشریح با متریک رایسنرـ نُردستروم و ۴. سیاه‌چاله‌های با بارالکتریکی و چرخنده؛ قابل تشریح با متریک کِرـ نیومن.

تعداد سیاه‌چاله‌ها در کیهان: کهکشان ما بیش از ۱۰۰میلیارد ستاره دارد. از این تعداد حدود ۱۰۰میلیون به اندازه‌ای بزرگ هستند که می‌توانند به سیاه‌چاله تبدیل شوند. در کیهان بیش از ۱۰۰میلیارد کهکشان وجود دارد. در مرکز هر یک از این کهکشان‌ها یک سیاه‌چاله‌ی کلان‌جرم وجود دارد. چنانچه کهکشان راه شیری را به‌عنوان معیاری متوسط برای کهکشان‌ها در نظر بگیرم، در این‌صورت می‌توانند حدود ۱۰میلیاردمیلیارد ستاره در کیهان به سیاه‌چاله تبدیل شوند. به این تعداد می‌باید ۱۰۰میلیارد سیاه‌چاله‌های کلان‌جرم کهکشان‌ها را نیز اضافه نمود. تاکنون تعداد ناچیزی، انگشت شمار، از سیاه چاله‌ها کشف شدند.۱۳ تراکم بسیار بالای مادّه در بخش‌هائی از کیهان باعث شکل‌گیری فرم‌ها و حالت‌های نامتعارفِ مادّه مانند سیاه‌چاله‌ها۱۲ می‌شود (تصویر۷).

 

تصویر۷: سیاه‌چاله‌ی کلان‌جرمِ کهکشانM87 با شعاع شوارتزشیلد حدود۱۹میلیاردکیلومتر را که از محاسبه‌ی تصویرهای رادیوئی، گرفته شده توسط تلسکوپ افقِ رویداد، بدست‌آمده است نشان می‌دهد.۱۴

این نوع فرم‌ها و حالت‌های نامتعارف مادّه را می‌توان با یاری مفهومِ‌های مادّه۱۵، پادمادّه۱۶ و مادّه‌ی منفی۱۷ و علمِ اخترـ فیزیک (astrophysics)، شاخه‌ای از فیزیک که ماهیت اجرامِ کیهانی مانند ستارگان و کهکشان‌ها را با اصولِ فیزیک و شیمی بررسی می‌کند ـ مطالعه کرد. نحوه‌ی ‌شکل‌گیری و عملکرد فرم‌ها و حالت‌های نامتعارفِ مادّه موضوع پژوهش روز است. به‌همین خاطر در حال حاضر بحثِ جامع در باره‌ی آن‌ها میسر نیست. با این حال نتایج علمیِ بدست‌آمده تاکنون از چنان دامنه‌‌ی وسیعی برخوردار است که لازم می‌نماید در اظهار نظرهای علمی و فلسفی در نظر گرفته شوند. به‌ویژه به این خاطر که دانشِ بشر از گیتی که در طولِ هزاران سال گذشته بدست‌آورده است محدود به بخش قابل رؤیت آن و از طریق امواج الکترومغناطیسی به اصطلاح "بینائی" می‌شود. اما این بخش تنها کم‌تر از ۵درصد کیهان را شامل می‌شود. در مقابل بخشِ غیرقابل رؤیت کیهان، بیش از ۹۵درصد، هنوز بطور عمده ناشناخته شده است. برای کسب اطلاع از این بخش بزرگ لازم است از روش‌های جدید، به‌ویژه روش متکی به امواج گرانشی که در سال‌‌های اخیر با موفقیت بکارگرفته شده است، بهره‌بجوئیم."۱۲

یک مثال: سرنوشت دراماتیک یک ستاره بزرگ (عظیم‌الجثه) "در حال مرگ" (فرانواختر) را در نظر می‌گیریم. در یک چنین حالتی ستاره در حین فروپاشی (سقوط) تمامی انحرافات خود از تقارن کروی را از طریق تشعشع امواج گرانشی از دست می‌دهد به جز تکانهٔ زاویه‌ای. از این‌رو می‌توان تصور کرد که بیشتر سیاه‌چاله‌ها می‌چرخند. چون بعید است که تکانهٔ زاویه‌ای ابژکت پیشین به‌طور کامل به بیرون منتقل شده باشد.

شکل‌گیری و چرخیدن ستاره‌ها

در ابتدای مقاله پیشین۲ گفتیم: "در کیهان، کلان‌سیستمی که دارای حالت تقارن کامل (fully symmetry state) باشد وجود ندارد." و اضافه کردیم: "جهانشمول‌ترین و تعیین‌ کننده‌ترین سازه برای چرخیدن اجرامِ کیهانی کمیتی است بُرداری به نام تکانهٔ زاویه‌ای یا تکانهٔ دورانی. این کمیت برآیند نیروهایی است حاصل از عدم تقارن کامل در چنان سیستم‌هایی."

لذا برای شکل‌گیری ساختارهای پیچیده مانند ستاره‎‌ها و سیاره‌ها هم نیاز به مواد اولیه (ذرات و گازها) است و هم نیروی تکانهٔ زاویه‌ای برای چرخیدن آنها. نیروی تکانهٔ زاویه‌ای تنها زمانی شکل می‌گیرد که بین ذرات و گازها همگنی تمام عیار وجود نداشته باشد. برای چنین حالتی می‌توان دو سناریو را تصور کرد: ۱. کیهان از همان ابتدای پیدایش ناهمگن بوده است که در این‌صورت شکل‌گیری نیرویی تکانهٔ زاویه‌ای (صرف‌نظر از برآیند صفر) بدیهی و طبیعی می‌نماید. ۲. کیهان در آغاز همگن بوده، اما زمانی و در مکانی بین ذرات و گازهای موجود کنش و واکنش ایجاد شده، از حالت همگنی خارج شده و امکان شکل‌گیری تکانهٔ زاوایه ای بوجود می‌آید.

در هر جای کیهان که چنان شرایطی حاکم باشد امکان تجمع ذرات و گازها گردهم وجود دارد (نیروی گرانش) که می‌تواند در طول زمان با جذب هرچه بیشتر ماده به ساختار پیچیده‌ی کیهانی با تکانهٔ زاویه‌ای تبدیل شود. قابل تصور است که یک چنین پروسه‌ای می‌تواند در هر زمان ـ مکانی در کیهان رخ دهد. روشن است، مکانی که از ماده بیشتری برخوردار باشد، یعنی دارای نیروی گرانش قوی‌تری، بی‌شک توان جذب ماده بیشتری را بسوی خود دارد. چنین مکانی می‌تواند در نهایت بسیار پُرچرم شده و به یک ستاره یا در صورت برخورداری از چگالی بسیار بالا به یک سیاه‌چاله تبدیل شود.

مطلب قابل توجه در شکل‌گیری ستاره‌ها این است که این اجرام عمده‌ی نیروی تکانهٔ زاویه‌ای خود، حدود نود درصد آن را (!)، زمانی که ذرات و ملکول‌های گاز بیشتری باهم برخورد می‌کنند و جرمشان مدام افزایش می‌یابد، یعنی در مرحله تولد ستاره (تصویر۱)، به بیرون انتقال می‌‌دهند تا از متلاشی شدنشان جلوگیری شود. بر اثر انتقال تکانهٔ زاویه‌ای به بیرون از سرعت چرخیدن ستاره‌ کاسته می‌شود، اما نه تا آن حد که از چرخش بیافتد. به عبارت دیگر، ستاره تنها با حفظ حدود ده درصد از تکانه ٔ زاویه‌ای به چرخش دور خود ادامه می‌دهد. نتیجه اینکه جرم موجود بیشتر به طرف داخل حرکت کرده و به مرکز خود سقوط می‌کند. اما از آنجا که تکانهٔ زاویه‌ای جزو کمیت‌های پایدار مانند انرژی است، می‌باید که آن نود درصد بیرون رانده شده به اجسام اطراف ستاره، یعنی سیارات منتقل گردد که بنوبه خود آنها را به حرکت دورانی وامی‌دارد.۳ و۴ 

ستاره‌ها از جمله خورشید اجرام آسمانی (توپ‌های گازی) با جرم، رنگ، دما و درخشندگی متفاوت می‌باشند که به‌طور مستقل می‌درخشد. ستاره‌ها از طریق هم‌جوشی هسته‌ اتم‌های سبک به هسته‌ اتم‌های سنگین انرژی تولید می‌کنند.

"اولین ستاره‌ها حدود صد میلیون سال پس از انفجار بزرگ (بیگ بنگ ) ظاهر شدند و از آن زمان به این طرف ستاره‌های بسیار زیادی کیهان را روشن کردند."۱۸ خورشید از نظر بزرگی ستاره‌ای متوسط است و حدود ۴٫۶ میلیارد سال پیش، یعنی حدود ۹ میلیارد سال پس از بیگ بنگ به وجود آمده است.

تصویر۱ شکل‌گیری (تولد) ستاره‌ای در فاصله هزار سال نوری از زمین به نام اچ اچ ۲۱۱ با سنی حدود فقط هزار سال را نشان می‌‌دهد (اچ اچ برگرفته از مخفف اسم دو اتم هیدروژن با علامت شیمایی H و یا به احترام Herbig George اخترفیزیکدان آمریکایی و Haro Guillermo اخترفیزیکدان مکزیکی). امکان مشاهده درخشش این "نوزاد" وجود ندارد، چراکه آن پشت ذرات و گازها پنهان است. اما می‌توان جت‌های صورتی رنگ (مولکول هیدروژن) را که در دو جهت مخالف پرتاب می‌شوند ملاحظه کرد. این جت‌ها در واقع طبق توضیحات ذکر شده نقش حفاظت از متلاشی شدن ستاره را دارند. حدود چهار و نیم میلیارد سال پیش خورشید نیز چنین وضعیتی داشته است. در واقع خورشید حدود ۴٫۶ میلیاردسال پیش با فروپاشی گرانشی بخش کوچکی از یک سحابی غول پیکر (molecular cloud, Sonnennebel ) به وجود آمده است (تصویر۸). 

 

تصویر۸: خورشید یک ستاره متوسط در سن ۴٫۶ میلیارد سالگی۱۹

نزدیک‌ترین ستاره ثابت به خورشید پروکسیما قنطورس (Proxima Centauri) نام دارد. این ستاره در فاصله ۴٫۲ سال نوری برابر با ۴۰۰۰۰هزار میلیارد کیلومتر از ما قرار دارد.  

بعضی ویژگی‌های خورشید

بعضی ویژگی‌های فیزیکی خورشید۲۰: شعاع ۶۹۶۳۴۲کیلومتر؛ حجم ۱۰۱۸×۱۴۱کیلومترمکعب؛ جرم ۱۰۳۰×۱۹۸۸۵ کیلوگرم (۹۹٫۸۶درصدِ جرمِ سامانه خورشیدی!)؛ میانگین چگالی g/cm3 ۱۴۰۸؛ چگالی مرکز g/cm3 ۱۶۲۲؛ گرانش سطحm/s2 ۲۷۴؛ دمای سطح ۵۷۷۷ کلوین؛ دمای مرکز ۱۵میلیون کلوین؛ درخشندگیW  ۱۰۲۶× ۳٫۸۲۸؛ فاصله از زمین ۱۵۰میلیون کیلومتر؛ سرعت دَورانkm/h  ۷۲۸۴ ؛ دُوره‌ی دوران ۳۵٫۳۸روز؛ تکانهٔ زاویه‌ای Js ۱٫۱۲۰۱۰۴۲ فاصله خورشید از مرکز کهکشان راه شیری حدود ۳۰۰۰۰هزارسال نوری، زمان لازم برای انرژی تولید شده در داخل خورشید تا رسیدن آن به سطح خورشید برابر با حدود ۱۷۰۰۰۰ سال است.

شکل‌گیری و چرخیدن سیاره‌ها 

در بخش چگونگی شکل‌گیری و چرخیدن ستاره‌ها گفتیم که این اجرام حدود نود درصدِ تکانهٔ زاویه‌ای اولیه خود را به بیرون انتقال می‌دهند. به این ترتیب از سرعت حرکت دورانی آنها کاسته و از متلاشی شدنشان جلوگیری می‌شود. و در معرفی مفهوم تکانهٔ زاویه‌ای۲ توضیح دادیم که این مفهوم یکی از مهم‌ترین قوانین پایستگی (قوانین بقاء) در علم فیزیک است. از آنجاکه اندارهِ تکانهٔ زاویه‌ای یک ’سیستمِ فیزیکیِ بسته‘، تا زمانیکه نیرویی از بیرون به آن وارد نشده است، پایدار (ثابت) می‌ماند لازم است که آن نود درصدِ تکانهٔ زاویه‌ای ستاره‌ به اجرام اطراف به ویژه سیاره‌ها منتقل ‌شود. همین امر سبب چرخیدن سیاره‌ها دور خود و دور ستاره می‌شود. "دُور خود چرخیدن سیاره بسیار مهم است، چراکه در غیراین‌صورت برای مثال یک طرف زمین همواره به طرف خورشید و لذا روشن و سوزان و طرف دیگر آن تاریک و سرد می‌بود. مانند کره ماه که تنها دور زمین می‌چرخد و نه دور خود.  دور خود چرخیدن سیاره‌ها برای شکل‌گیری حیات تعیین کننده است. سیاره‌ها در طول زمان ضربات مختلفی را متحمل شده‌اند. این ضربات سبب چرخیدن آنها در جهات مختلف شده است."۳و۴    

گفتیم که خورشید حدود ۴٫۶ میلیاردسال پیش با فروپاشی گرانشی بخش کوچکی از یک سحابی غول پیکر به وجود آمده است. بخشی که در حین انقباض تکانهٔ زاویه‌ای خود را حفظ می‌نماید و همین امر باعث تبدیل آن به یک دیسک صاف (صفحه‌ای‌شکل، به دلیل نیروی گریز از مرکز) می‌شود (تصویر۹).

 

تصویر۹: فاز آغازین شکل‌گیری سامانه خورشیدی۲۱

به این ترتیب سیاره‌ها و همین‌طور سیارک‌ها در یک دیسک چرخان از گرد وغبار دور خورشید جوان شکل می‌گیرند و از همان ابتدای شکل‌گیریشان یک تکانهٔ زاویه‌ای دریافت می‌کنند. بسته به فاصله‌ سیاره‌ها و همینطور برخوردها در فاز اولیه شکل‌گیری سامانه خورشیدی با سرعت‌های مختلف می‌چرخند. در واقع سیاره‌ها در طول زمان از گرد و غبار موجود در اطراف خورشیدِ جوان تشکیل و به اجرامی متراکم تبدیل می‌شوند. این اجرام در مجموع سهم بسیار ناچیزی از سامانه خورشیدی را تشکیل می‌دهند (تصویر۱۰). در ادامه بادهای خورشیدی بقایای گازهای سبک را از خود دور می‌کند. به این ترتیب سیاره‌های درونی سامانه خورشیدی عمدتن از سنگ‌ها و فلزات سنگین و سیاره‌های دورتر عمدتن از مقادیر زیادی گازهای سبک، هیدروژن و هلیوم، تشکیل شده‌اند.

 

تصویر۱۰: تصویر آپلو۱۷ از زمین (۱۹۷۲٫۱۲٫۰۷)۲۲

بعضی ویژگی‌های سیاره زمین

بعضی ویژگی‌های فیزیکی زمین۲۳: زمین با سرعتی برابر با ۲۹٫۷۸ کیلومتر در ثانیه دور خورشید می‌چرخد، در حال حاضر زمین در هر ۲۴ ساعت یکبار دور خود (دور محور زمین) می چرخد، قطر استوایی ۱۲۷۵۶٫۲۷ کیلومتر، شعاع قطبی ۱۲۷۱۳٫۵۰ کیلومتر، جرم ۵۹٫۷۲۲  کیلوگرم ، میانگین چگالی  ۵٫۵۱۴ ، گرانش  ۹٫۷۸ ، سرعت گریز  ۱۱٫۱۸۶ ، زمان دقیقِ چرخیدن دور خود ۲۳ ساعت و ۵۶ دقیقه و ۴ ثانیه ، زمان چرخیدن دور خورشید (یعنی سال نجومی که کمی بلندتر از سال تقویمی است) ۳۶۵ روز و ۵ ساعت و ۴۸ دقیقه و ۵۶ ثانیه، انحراف محوری  ، سرعت چرخش استوایی ۱۶۷۴٫۴ کیلومتر بر ساعت ، تکانهٔ زاویه‌ای kg  ۱۰۳۳  ۵٫۸۶

شکل‌گیری و چرخیدن ماه‌ها

در مقاله۲۴ تحت عنوان ’چگونگی پیدایش ماه‘ می‌خوانیم: "چگونگی پیدایش ماه موضوعی است که بسیار در باره‌ی آن بحث شده و می‌شود. اما هنوز پاسخی قطعی به آن داده نشده است. البته فرضیه­های گوناگونی درباره­ی پیدایش ماه ارائه شده‌اند.که قبول یا رد آن‌ها منوط می­شود به ارائه­ی دلایلی روشن برای هریک از آن­ها. در حال حاضر یکی از این فرضیه­ها به نام ’فرضیه­ی تصادم‘ از بیشترین درجه­ی تأیید برخوردار است. با این حال ما نمی­توانیم به دلیل پرسش­های بی­پاسخ در رابطه با این فرضیه احتمال وجود فرضیه­ی دیگری را که با داده­های عینی همخوانی بیشتری داشته باشد منتفی شده بدانیم.

ماه اغلب رب­النوع الهی بسیاری از اقوام و ملل محسوب می­شود. چگونگی پیدایش آن اما تاکنون دقیقاً روشن نشده است. نظریه­ی دکارت (۱۶۵۰ـ۱۵۹۶) یکی از اولین تعمق­ها درباره­ی پیدایش ماه بود که پس از مرگ او در سال منتشر شد. اولین بررسی­های تجربی در باره‌ی ماه را گالیله (۱۶۴۲ـ۱۵۶۴) انجام داد. از هنگامی که گالیله برای نخستین بار بلندی­های ماه را با یاری دوربین مشاهده کرد. بسیاری چیزها مورد سوال قرار گرفت. از جمله معلوم شد که ماه مانند زمین است و تنها یک کیهان وجود دارد (ارسطو معتقد به دو جهان بود، جهان زیر ماه و جهان زَبر ماه). چند دهه بعد ایساق نیوتن (۷/۱۷۲۶ـ۱۶۴۲) نیروئی را که ماه را در مدار زمین به گردش درمی­آورد همان نیروئی دانست که زمین را دور خورشید می­چرخاند.

 در منظومه‌ی شمسی هیچ سیاره‌ای به جز زمین وجود ندارد کهنسبت بزرگی آن با یکی از قمرهایش قابل مقایسه با نسبت بزرگی زمین و ماه باشد؛ نسبت خاصی که به ما امکان می­دهد تا از زمین و ماه به‌عنوان یک سیستم واحد، یعنی ’سیستم  زمین- ماه،‘ صحبت کنیم (تصویر۱۱).بی­شک پیدایش ماه یا ’سیستم زمین- ماه‘ را می­باید در راستای پیدایش کل منظومه­ی شمسی مطالعه کرد، منظومه­ای که از رُمبش گرانشی مِه­های گازی خورشیدی به‌وجود آمده است. مرکز این منظومه را جرم عظیمی به نام خورشید، دربرگیرنده­ی بخش عمده­ی مه­های گازی، تشکیل می­دهد. از مِه­های گازی باقیمانده شبه سیاره‌های کوچکی شکل می­گیرند که در طول زمان با گردهمائی­شان سیاره­های دوران اولیه را به‌وجود می­آورند.

در ادامه­ی این پروسه­های نسبتاً طولانی اغلبِ شبه سیاره‌های کوچکِ باقی­مانده یا به سیاره­های نوظهور سقوط می­کنند و یا توسط آن­ها به حاشیه­ی منظومه­ی شمسی و یا حتی به بیرون از آن پرتاب می­شوند. در این دوران و اوضاع و احوال بود که ماه و با آن سیستم زمین – ماه به‌وجود آمد. در این­باره فرضیه­های مختلفی وجود دارند

از قرن نوزدهم تاکنون چندین فرضیه (که گاهی از آن­ها به اشتباه به‌عنوان نظریه نام‌برده می­شود) درباره­ی پیدایش ماه و یا سیستم زمین ـ ماه ارائه شده­اند که مهم­ترین آنها ۷ فرضیه به نام‌های زیر هستند که در مقاله نامبرده توضیح داده شدند: ۱. فرضیه ماه کوچک و ماه بزگ ۲. فرضیه ماه‌های زیاد ۳. فرضیه‌ی کِشِیشی ۴. فرضیه دوخواهران ۵. فرضیه جدایش ۶. فرضیه اُپیک ۷. فرضیه تصادم."۲۴

                             

                 تصویر۱۱:  تصویری از سیستم زمین ـ ماه۲۵                      تصویر۱۲: زمین و ماه حول مرکز ثقل مشترک خود می‌چرخند۲۶ 

تصویر۱۲ حرکت چرخشی سیستم زمین ـ ماه دور مرکز ثقل مشترک این دو به نام باری‌سنتر (barycentef) را که در حدود ۱۷۰۰ کیلومتری زیر سطح زمین قرار دارد نشان می‌دهد. این چرخش همراه با نیروی گرانش مسؤل جزر و مد در زمین است.

بعضی ویژگی‌های کره ‌ماه

بعضی ویژگی‌های فیزیکی کرهِ ماه۲۷: میانگین قطر ۳۴۷۴ کیلومتر ، جرم ۱۰۲۲ ۷٫۳۴۶  کیلوگرم ، مساحت سطح ۳۷۹۳۲۳۳۰ کیلومترمربع ، میانگین چگالی ۳٫۳۴۴  ، دوره چرخش (جانبی) ۲۷٫۳۲۲ روز ، انحراف محوری نسبت به صفحه مداری °۶٫۶۸ ، گرانش در سطح (شتاب در سطح)  ۱٫۶۲ ، درجه دمای سطح ۹۵کلوین تا ۳۹۰کلوین،

سرعت گریز  ۲۳۸۰، سرعت گریز ماه ۶بار کوچکتر از سرعت گریز زمین است. به‌همین دلیل فضانوردان می‌توانند در کره ماه ۶برابر بالاتر بپرند، اما تنها ۶برابر کندتر بدوند.

 

چرا همهٔ سیارات روی یک صفحه قرار دارند

پیشتر در بخش’شکل‌گیری و چرخیدن ستاره‌ها‘ گفتیم که این اجرام با فروپاشی گرانشی بخش کوچکی از یک سحابی غول پیکر بوجود می‌آیند. بخشی که در حین انقباض به سرعت دوران آن افزوده می‌شود (مانند یک اسکیت‌باز که بازوهایش را جمع می‌کند). اما این ساختار برای جلوگیری از متلاشی شدن و حفظ سامان خود و در نهایت تبدیل شدن به یک ستاره حدود نود درصد از تکانهٔ زاویه‌ای را به بیرون انتقال می‌دهد. همین امر سبب شکل‌گیری یک دیسک صاف (صفحه‌ای‌شکل، به دلیل نیروی گریز از مرکز) در اطراف ستاره می‌شود (تصویر۱۳).

 

تصویر۱۳: نمایش نمادین سیاره‌های سامانه خورشیدی۲۸

در بخش ’شکل‌گیری و چرخیدن سیاره‌ها‘ گفتیم: نود درصدِ تکانهٔ زاویه‌ای ستاره‌ به اجرام اطراف ستاره به ویژه سیاره‌ها منتقل می‌شود و همین امر سبب چرخیدن آنها دور خود و دور ستاره می‌شود. در واقع سیاره‌ها از گرد و غبار باقی‌مانده در اطراف خورشید جوان در طول زمان به اجرامی متراکم که در مجموع سهم بسیار ناچیزی از سامانه خورشیدی را تشکیل می‌دهند شکل می‌گیرند.

به این ترتیب سیاره‌ها و همین‌طور سیارک‌ها در یک دیسک چرخان از گرد وغبار دور خورشید جوان هر یک با تکانهٔ زاویه‌ای خاص که مقدار آن به فاصله‌ آنها از مرکز بستگی دارد شکل می‌گیرند. با این حال جهت چرخش‌ بعضی از آنها متاثر از تصادماتی است که در فاز شکل‌گیریشان بین آنها رخ می‌دهد. اما در نهایت هر یک از آنها با سرعت و جهت چرخش خاص دور خود و دور ستاره در فضای "دوبُعدی" (صفحه‌ای شکل) می‌چرخند .

 

دکتر حسن بلوری  برلین، ۲۰۲۴٫۰۱٫۰۸

 

 

مراجع

1. https://www.mpia.de/news/science/2023-12-jwst-hh211

2. Hassan Bolouri,why do cosmic bodies rotate?

حسن بلوری، ’چرا اجرام کیهانی می‌چرخند؟ آیا کیهان نیز می‌چرخد؟‘، منتشر شده در سایت‌های پارسی‌زبان، ماه دتسامبر سال ۲۰۲۳

3. Herald Lesch: https://www.ardmediathek.de/video/alpha-centauri/warum-drehen-sich- 1-2  

4. Herald Lesch: https://www.ardmediathek.de/video/alpha-centauri/warum-drehen-sich- 2-2

5. https://scienceblogs.de/astrodicticum-simplex/2012/08/30/links-oder-rechts-dreht-sich-das-universum/

6. https://de.wikipedia.org/wiki/Galaxie

7. https://fa.wikipedia.org/wiki/%DA%A9%D9%87%DA%A9%D8%B4%D8%A7%D9%86

8. https://de.wikipedia.org/wiki/Galaxienhaufen

9. https://fa.wikipedia.org/wiki/%D8%AE%D9%88%D8%B4%D9%87_%DA%A9%D9%87%DA%A9%D8%B4%D8%A7%D9%86%DB%8C

10. https://de.wikipedia.org/wiki/Laniakea

11. https://en.wikipedia.org/wiki/NGC_4696

12. Hassan Bolouri, White hole, Wormhole, Black hole

۱۲. حسن بلوری، ’مفهوم ماده در تراکم‌های بسیار بالا، سفیدچاله، کرم‌چاله، سیاه‌چاله‘ منتشر شده در سایت‌های پارسی‌زبان، ماه اوت سال ۲۰۲۰

13. NASA: Hubble Site: How many black holes are there?

14. Das erste Bild des Schwarzen Loches MX87 vorgestellt von ETH-Forschern; https://de.wikipedia.org/wiki/Schwarzes_Loch#/media/Datei:Black hole essier87crop_max_res.jpg

15. Hassan Bolouri, The Concept of matter in Philosophy and Science

۱۵. حسن بلوری، مفهوم مادّه در فلسفه و علم، منتشر شده در سایت‌های فارسی‌زبان، سال ۲۰۲۰

16. Hassan Bolouri, Why is there something rather nothing?

۱۶. حسن بلوری، چرا به‌جای هیچ، چیزی وجود دارد؟ مادّه و پادمادّه، منتشر شده در سایت‌های فارسی‌زبان، سال ۲۰۲۰

17. Hassan Bolouri, Negative Matter (negative Mass, negative Energy): E = - mc2

۱۷. حسن بلوری، مفهوم مادّه‌ی منفی، منتشر شده در سایت‌های فارسی‌زبان، سال ۲۰۲۰

18. https://astronomynow.com/2016/11/21/forming-stars-in-the-early-universe/

19. https://www.weltderphysik.de/gebiet/universum/sterne/sonne/

20. https://de.wikipedia.org/wiki/Sonne

21. https://scienceblogs.de/astrodicticum-simplex/2

22. https://de.wikipedia.org/wiki/Datei:The_Earth_seen_from_Apollo_17.jpg

23. https://de.wikipedia.org/wiki/Erde

24. Hassan Bolouri, The moon

۲۴. حسن بلوری، ’چگونگی پیدایش ماه‘، سحنرانی بتاریخ ۱۳۹۱٫۱۲٫۱۰ و منتشر شده در سایت‌های پارسی‌زبان

25. https://www.planet-wissen.de/natur/weltall/mond/index.html

26. https://de.wikipedia.org/wiki/Erde-Mond-Schwerpunkt

27. https://de.wikipedia.org/wiki/Mond

28. https://www.geo.de/geolino/forschung-und-technik/4917-rtkl-weltraum-unser-sonnensystem

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

منبع:پژواک ایران


فهرست مطالب حسن بلوری در سایت پژواک ایران 

*مسائلِ بزرگِ جهانِ هستی پیش از مِهبانگ چه بود؟  [2024 Apr] 
*گرانشِ مادّه و پادمادّه  [2024 Mar] 
*مفهوم اطلاعات مفهوم اطلاعات در فیزیک  [2024 Feb] 
*شکل‌‌گیری و چرخیدن اجرام کیهانی کهکشان‌ها، سیاه‌چاله‌ها، ستاره‌ها، سیاره‌ها و ماه‌ها [2024 Jan] 
*چرا اجرام کیهانی می‌چرخند؟  [2023 Dec] 
*گرانشِ آنتروپیک / ترمودینامیکِ فضازمان   [2023 Oct] 
*آیا کیهان یک هولوگرام است؟   [2023 Sep] 
*آیا کیهان یک سیاه‌چاله است؟ و ما در یک سیاه‌چاله زندگی می‌کنیم؟  [2023 Aug] 
*کیهانِ کوانتومی  [2023 Jul] 
*کیهان‌‌شناسی کوانتومی  [2023 Jun] 
*گرانشِ کوانتومی   [2023 May] 
*خلاء و ساختار آن بحثی در بارهٔ «هیچ»  [2023 Apr] 
*کیها‌ن شناسیِ کلاسیک  [2023 Mar] 
*معنای مفهوم در قوانین طبیعی  [2023 Feb] 
* چگونگی پیدایش ماه  [2022 Sep] 
*قوانینِ طبیعی و انبساطِ کیهان  [2022 Sep] 
*آیا قوانین طبیعی تغییر می‌کنند؟  [2022 Aug] 
*آیا قوانین طبیعی جهانشمول هستند؟  [2022 Jun] 
*روشِ دستیابی به قوانینِ طبیعی  [2022 May] 
*چیستی قوانین طبیعی  [2022 Mar] 
* قلهُ اندیشیدنِ عِلمی  [2021 Oct] 
* روزِ بدونِ دیروز دانه دانه بودنِ فضا و زمان  [2021 Jul] 
* علیتِ سرنوشت‌ساز   [2021 Jun] 
*فضازمانِ اَبرسَیّال  Superfluid Spacetime1  [2021 May] 
*کوانتای فضا و زمان   [2021 May] 
*خاستگاهِ فضا و زمان The origin of space and time1 [2021 Mar] 
*ثابت‌های طبیعیِ و شناخت‌شناسی  [2021 Mar] 
*مفهومِ اندازه‌گیری در نظریه کوانتوم   [2021 Jan] 
*مفهوم همدوسی و ناهمدوسی   [2020 Dec] 
* مرزهای ادراکِ حِسی در شناختِ بی‌واسطه   [2020 Nov] 
*مفهومِ واقعیت در نظریه کوانتوم  [2020 Oct] 
*ساز‌و‌کارها  [2020 Oct] 
*مفهوم مادّه در تراکم‌های‌ بسیار بالا  [2020 Aug] 
*مفهوم فضا   [2020 Jul] 
*زمان چیست و چگونه به دنیا آمد؟ پرسشی که ذهن انسان را از دیرباز  [2020 Jul] 
*مفهومِ مادّه‌ی منفی  [2020 Jun]